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Abstract. Modern Bioanformatics data sources are widely used by molecular biologists f o r  homology searching and new 
drug discoverg. User-friendly and yet responsive access is  one of the most desirable properties f o r  integrated access to  the 
rapidly growing, hetero.qeneous, and distributed collection of data sources. The  increasing volume and diversity of dagital 
information related to  bioinformatics (such as genomes, protein sequences, protein structures, etc.) have led to  a growing 
problem that conventional data manqqement systems do not  have, namely finding which information sources out of many  
candidate choices are the most relevant and most accessible to  answer a given user  query. W e  refer t o  this problem as 
the query routing problem. I n  this paper we introduce the notation and issues of query routing, and present a practical 
solution f o r  designing a scalable query routing s?jstem based on  multi-level progressive pruning strate.gies. The  key idea i s  
to  create and maintain source-capability profiles independentlg, and to provide al.qorithms that can dynamically discover 
relevant information sources f o r  a given querij through the smart use of source profiles. Compared to  the keyword-based 
indexing techniques adopted in most of the search engines and software, our approach offers fine-granularity of interest 
matching, thus it is more powerful and effective f o r  handling queries with complex conditions. 

Keywords. Bioinformatics data sources, Data Inte.qration, Data Analysis, Data Access, Li fe  Science Applications, 
Molecular Biolo.9~ Databases, Query Routing. 

1 Introduction 

Huge aut1 growing amount of lioiiiformatics data that reside in specialized databases today, are accessible over 
the Iiiterriet. most of them with limited query piocessiiig capabilities. The Molecular Biology Database Collec- 
tion [Baxevaiiis. 2000. Goble et (11.. 20011. for example: currently holds over 500 data sources. not even iiicludiiig 
iriariy tools that analyze the information contained therein. The most popular resources iIicludiiig those coil- 
cerned with protein sequences (such as SWISS-PROT. an ailnotated protein sequence database, arid PIR: the 
Protein Information Resource). proteiii structure (such as PDB: the Protein Data Bank). genome data (such as 
AceDB. a Cue~iorhhl i t i s  e1e.yun.s database). DNA (deoxyribonucleic acid) sequences (such as EhJBL. the Euro- 
pean Rlolecular Biology Laboratory and Geri Bank): iiiotifs (such as PROSITE. a database of protein families aiid 
doiliains, and PRINTS. a coinpendium of protein fingerprints) , and sequence matching (such as BLAST (Basic 
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Local A41ig~i~~ierit Search Tool) searches: available at  several sites such as NCBI, EMBL: KEGG: DBJJ: and so 

It is widely 1 ecogiiixed that Bioinformatics data sources are extrerriely helpful in assisting rnolecular biologists, 
geneticists, arid biochemists to understand the biochemical function: chemical structure, and evolutionary history 
of orgaiiisms: arid Inore importantly to use information collected or generated about liurnan genome, such as 
protein sequences. DN.4 sequences: protein structure: chemical compowids, to design drugs to prevent and cure 
disease. 

Bioixifoririatics data sources over the hiterrlet have a wide range of query processing capabilities. Most Web- 
based sources allow only limited types of selection queries. Data from one source often rriust be combined with data 
from other sources to give scientists the information they need. Several data iiitegration systems [Haas e t  al.: 2001. 
Goble e t  ul.. 2001, McGinnis. 1998, Siepel e t  al.: 2001, Davidson e t  al.: 19991 have been created to provide users 
with integrated access and a single point of contact to multiple, heterogeneous bioiriformatics data sources. One 
of the critical challenges for providing integrated access to bioinformatics data sources is the problerri of effectively 
locating tlie light information from the right data sources and incorporating newly added capabilities or data 
sources in answering queries. More concretely. it is widely obsei ved that Iiot all the bioiriformatics data sources 
can contribute to a query at  any given time. Thus. it is important to route a query to only those data sources 
that are capable of answering tlie query. We refer to this problem as tlie query routirig problem [Liu. 19991. 

Q u e r y  ro,uting is a process of directing user queries to appropriate servers by coIistraiIiiIig the search space 
through query refirieIIierit and source selection. Concretely, effective query routing iiot only ieduces the query 
iespoiise t ine and tlie overall processing cost. but also eliminates a lot of unnecessary corn~~iunication overhead 
over the global Iietworks arid over tlie individual inforiliation sources. 

Query routing is of particular importance to large-scale bioiriforrriatics query systems for a number of reasons. 
First. popular online systems for searching life sciences data (such as genomic data sources) match queries to 
answers by comparing a query to each of the sequences iii the data source. Efficiency in such exhaustive systems 
is crucial since soIIie servers process over 4O:OOO queries per day [McGiririis, 19981. Furthermore resolution of each 
query often requires comparison to over one gigabyte of genomic sequence data. While exhaustive systems are 
practical at  present. they ale becoming prohibitively expensive. even with database indexing techniques. Second. 
differerit bioixiforiiiatics tlat a sources in differing formats have beeu set up to support different aspects of genomics. 
proteoinics. arid the drug design process. Some of these sources are huge aiid growing rapidly. Statistics show 
that bioinformatics data souices are now doubling in sixe every 15-1G months. arid the Iiuniber of users arid tlie 
query rates ale growiiig as well [Huyn. 20011. Third but riot last, there are giowing demands for amwering simple 
key-word or string Iriatcliiiig based queiies with comprehensive categories of iIiforIriation. For instance: cancer 
researchers may expect to use an integrated bioinformatics query system to help identify genes that iespond 
to low-doses of radiation. This problem is difficult because the inforrriatioii required by the scientists is spread 
across ~riariy independent. IVh-based data sources: each using their own query iiiterfaces with their own data 
forrnats a ~ i d  limited query processirig capabilities. How to locate the relevant data sources that are capable of 
aiisweriiig a query is critical to the perfoririaIice of any iiitegi ated query system for traIisparent access to multiple 
bioiiiforrriatics data sources. 

forth). 

Surprisingly. most existing bioinfonnatics data iiitegratioii systems [Critchlow e t  ul.. 2000, Davidson e t  al., 1999. 
Haas e t  al., 2001. Markomitz e t  ul., 1999. Goble e t  al.. 2001. Siepel e t  al.: 20011 do not provide the support for 
query routing even though some of them offer sopliisticatetl query optimixations. Queries may be routed to data 
sources that are irrelevant or caiiiiot contribute to the answeis. -4s a result, iiot only is the resporise of queries 
delayed but also tlie throughput of the data serveis is affected: Iiot irieIitioiiiIig the additional network traffics 
incurred. In this paper we first present an overview of BioZoorri arid show how it can be used to integrate access 
to lioinforrnatics data from heterogeneous data sources. Then we introduce the BioZoorri source-profile based 
query routing scheme. including the use of source-capability profiles to capture diverse and limited source content 
arid que1 y capabilities. and tlie multi-level progressive pruning algorithm for locating relevant data sources in 
answeriIig queries from a large arid growing collection of sources. To illuiriiIiate our tliscussion, we sketch several 
research scenarios that substantiate tlie need for cross-source queries arid query routing based optimization. Tlie 
iiiaiii contributioii of the paper is the coricept of source-capability based query routing arid its multi-level progres- 
sive pruning strategy for selecting tlie most relevant data sources in aiisweriiig a bioinfonnatics query. We also 



report tlie first prototype developxiieiit effort and our iiiitial experimental result for the query routing algorithm. 

2 BioZoom: An Overview 

BioZoorri is a bioiiiforriiatics data integration systerri that provides a single coherent frarnework for integrated 
access to a large: distributed collection of lioinformatics information providers. Before iritroducixig the BioZooiri 
query routing scheme. we first briefly overview the BioZoorii system arcliitecture arid understand liow the source- 
capability inforination is collected: and liow BioZooIri supports iiitegrated access to multiple heterogeneous data 
sources. Figure 1 presents a sketch of BioZooxri architecrure. 
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Figure 1: BioZooiri System Architecture Sketch 

Let us walk through tlie system arcliitecture with an example of a simple geiiomic analysis task. To examine 
a DN.4 sequence in aligximent with similar sequences from blast data sources. a scientist must use tliffererit tools 
with three different interfaces and convert the output from each one to a format acceptable to the next. More 
coiicretely. tlie scientist may start with a DNA sequence in a test file, tlieri cut axid paste the DNA sequence 
text into the search interface of a Blast data source. say NCBI Blast. to perforrri a search for similar sequences. 
Tlie scieritist would met1 to save results arid extracts sequence identifiers of best matches ~~iariually aid  feed the 
sequeiice ideiitifiers into another Web-based data source. say PDB Blast. to retrieve full-length sequence text of 
best matches. .4gaiIi tlie scientist xieeds to save results and coiiverts forrriat in order to use a commaiid-line tool 
to create a iriultiple sequence alignment [Siepel et al.. 20011. 

Using BioZooiii. the scientist first iieeds to enter tlie DN.4 sequence as tlie search keyword and select tlie output 
optioiis such as generate a rriultiple sequence aligmneiit usiiig tlie best matches of similar sequeiices. Orice the 
client iriaiiager parses tlie query. Tlie level-one query routing will identify tlie types of candidate data sources 
needed to answer this quexy. Tlie level-two routing will prune the set of candidate data sources based 011 their 
query capabilities. Tlie adaptive queiy sclieduler generates correspoiidirig subqueries to data sources selected by 
tlie first two levels of routing. and defines tlie ordering (schedule) of executing subqueries. The level-three routing 
col1ect.s the types of dyxiaixiic iiiforrriatioii needed for relevaiice reasoning arid perform further irrelevance pruniiig 
at  runtime. The results returned from selected data sources by the BioZooiii runtime system will feed into tlie 
result filtering arid packaging module to perform the final stage of query fusion. Tlie fused query results will be 
returned to the scientist on tlie scieeii or tlelivered in a file. The souice capability profile generator is used to infer 



tlie source capability iiiforixiatioii from the source profiles created by the Bio Crawlers, which are Web robots that 
traverse the Web and look for iiiterestiiig bioiriformatics data sources and extract their query capabilities. 

3 Source-Capability Based Query Routing 

We begin by iiitroducirig a motivating exairiple arid a predicate metadata model in which user queries: user query 
profiles: arid source profiles are captured. Then we present the design of our query routing algorithms. 

3.1 The Motivating Example 

Bioiiifoririatics sources available over the Interriet have diveise and yet limited query processing capabilities. 
R4ost information servers, where data actually reside (such as PDB: NCBI, EMBL): only support liiiiited types of 
selection or similarity queries. This introduces some interesting query processing clialleriges as illustrated below. 

Example 1. Consider a pharmaceutical researcher wlio warits to iesearch drugs to combat HI\'. To understand 
the approach the researcher may take to combat this virus: it is iiriportarit to uiiderstand how the virus works. 

The HI\r virus itself is coinposed of two RNA straiids eiicased in a protein envelope. The viral envelope has 
2 proteiiis. narned gp120 axid gp41. The gp120 biritls to CD4: a receptor protein on a type of wliite blood cell. 
called CD4+ T cells. The gp4l then causes the fusioii of the HIV with the T cell. After the virus has merged 
with a cell. tlie viral RN.4 is iiiseited into the cytoplasm of the cell. Each virus particle has 2 copies of an RN.4 
genome. which are traiiscribed into DN.4 in the infected cell aiid integrated into the host cell cliroixiosome with 
the help of an erixyme called reveise transcriptase. The viial RNA copies itself into the DNA of the cell. causing 
the cell to produce more of tlie viral RN.4. The RN.4 transcripts produced froni the iiitegrated viral DN.4 serve 
both as 1riRN.4 to direct the syitliesis of the viral proteins arid later as the RNA genomes of new viral particles. 
which escape from tlie cell by budding from tlie plasiria iiienil~raiie. each in its own rrieiribraiie envelope. For more 
details on how HIV operates. see (littp://www.niaid.nili.gov/factslieets/liowliiv.lit.rri). 

01ie possible solution is to use drugs to preveiit the virus from attaching to receptors on cells so that other 
white Mood cells. called killer T cells. can recognize. ingest. aiid destroy the viral package before it lias a cliaiice 
to infect a new cell. Tliere are many ways of developing such drugs. One co~ii~iioii iiietliotl is experimental; the 
process is to physically test a conipou~id against a sample of tlie virus or of a protein that tlie virus binds to. 
This process may be labor intensive. In addition. clioosiiig a coiripouiid to test is quite difficult because most 
pharmaceutical coiripanies liave a catalogue of several million coiiipouxids iriakirig an exhaustive search extreiiiely 
slow: tedious. a i d  error-prone. Another way to develop di ugs is search properties of krioivii coiripourids for 
promising candidates. Tliere are several techiiiques that are relevant here. First, a researcher may firid all related 
proteins to a protein that is known to be involved in a disease process: such as gp120. or CD4. Second. a researcher 
may want to find all drug compounds that are similar to a drug that affects the protein they are interested in 
(for example. a reverse transcriptase iriliibitor or a drug that inhibits the biiidirig of gp120 to CD4). -4 third 
teclniiyue is to aiialytically tleteririiiie the effect of a drug co~~ipound on tlie protein arid the related proteins. 
Some efforts have been rriatle in modeling liow chemical cor~ipounds affect a protein based on a coiriputatiorial 
iriodel of tlie cliemical a id  protein as well as with comparisons with known iiiteractioiis between the protein arid 
a siiriilar chemical. or between the chemical aiid a siiriilai protein. 

Consider the example query. First. a researcher may use PDB to find the structure for CD4. gp120. or gp41. 
Then the researcher may wish to find similar proteiiis to compare structure. function. or related research. To 
do this, lie needs to take tlie sequence ericodirig of the proteins discussed above. such as gp120. trailslate the 
sequelice given by PDB into a sequence suitable for searching other data sources. Such a traiislatiori is often done 
by replacing auiiiio acid xiaiiies with tlieir single letter eiicoding. Then he takes this sequence and submits it to 
multiple similarity iriatchiiig sources. Examples iiiclude NCBI's BLA4ST tool - blastp. or oiie of its rriaiiy rriirror 
sites and other BLAST sites that are not strict mirrors of NCBI. such as ERIBL, DBJJ. or KEGG. The blast 
searches will list proteins similar to tlie one submitted: as well as liow the aniino acid sequence aligns with each 
of the similar proteins. Finally. all of the relevant publications: in a literature databases such as PubRIed. for the 



similar proteins will be gathered. Now the researcher enters the drug design step. First, he needs to uiiderstaiid 
how chemical compounds caii affect the proteins identified. The goal liere is to find a chemical that will iiifiibit 
gp120 from biiiding with the CD4 receptor, while uiiiiimixiiig the interference with regular cellular function. 

Pharinaceutical companies usually rriaiiitaiii a list of chemical compounds with on the order of a million 
entries. Through rriatlierriatical inodeling. how each compou~id interacts with the physical structure of each 
protein identified with tlie function of HIV can be predicted (with varying degrees of success). Studies of how the 
chemical lias affected the furictiori of similar proteiiis is another way of predicting how the chemical will interact 
of a protein. We can express a query searcliiiig for the proteins identified above as well as all siiriilar proteins as 
.s i~~iiIur(l ,  { keyword = “HIV” A(yrotein=”.yyl20” V pr*otein=”gp4l” V yro te i~ i=”CD4 ”}). This search is fairly 
complex and cannot be processed by any known source in oiie-stop. Thus. to process this query. our system 
rieetls to break down the end-user query into source-specific queries that are executable at individual sites, such 
as NCBI. PDB: or ERIBL. One possible plan is to break the query into the following series of queries. (1) Query 
PDB: (keyword = “HIV” A (pr.~tei7i=”.yyl20” V pr.utei7i=’:gp41” V protei7i=”CD4”). obtaiiiiiig tlie structure of 
tliese known proteins; (2) For any protein T from the result of (1): convert T into a pioteiri sequence rS; (3) at 
NCBI execute a BLAST query for each rs; (4) filter out all results tliat are not witli-in a sirriilarity of 1: as defined 
by the BL-4ST similarity iiieasure. 

Through this example. we observe two interesting facts. First. the extraction aiid use of the PDB and NCBI 
soiirct’ profiles plays a critical role in routing the queiy to tliese relevant data sources. Second, even simple selection 
queries against a single tlata source across the Internet may liave more complications due to the source-specific 
coiiteiit and its liiriited query capability. Tlie situation becoiries iiiore sophisticated wlieri we have queries over 
multiple distributed tlata sources that are heterogeneous in both iiifoririatioii content arid their yueij’ capabilities. 

3.2 The Metadata Description Model 

The iiietatlata description model is designed to be an object relational model. It uses tlie relational iriodel as the 
basis and is aiigirieiited with essential object-oriented features that are useful for tlescribiiig and reasoning about 
the scopes of user queries and the contents aiid query capabilities of information sources. Typical components 
of the nietadata model are classes, a set of (simple or composite) attributes associated with each class, a class 
hierarchy described by a subclass-superclass partial order. In order to model relations arid classes miiforuily, we 
use a uiiary relation to describe each class a d  a biriary relation to describe each attribute. 

We model queries with select. prqject. join. aiitl uiiioii operations arid the built-in comparison predicates such as 
<. <, = and f. We assuiiie set semantics for queries. For convenience of our analysis. we consider only co7~jwictive 
queries. A coiijuiictive query Q coiisists of a lieatl predicate with arguments. deiiotiiig tlie result template. and 
a l~otly. representing a binding pattern [Rajarriian et al., 19951 of Q. The arguments of the predicate that are 
provided as input parameters of the query are expected to be 1Jouiid. The arguiiieiits of the predicate that ale 
protlucetl as outputs of tlie query are free variables. We use lower case letters for variable mines and uppercase 
letters with bars t.o denote tuples of variables and coiistants. Formally. a cori.junctive query is of the form: 

. 

4 4 

wliere Q(.?) is the lieatl. s u ~ < , ~ , ~  1;. ant1 the rest is the body. ~ ~ ( 1 7 ) .  ....c,~~(IL~) are callecl iioii built-in 
atoms in the hotly. ant1 C1. .... C,,, are iiaiiies of classes or attributes used in Q; 711 is the number of 11011 hilt-iii 
atoms iii the body and is called the k7igtii of the conjunctive query Q. FQ is a conjunction of built-in comparison 
atoms of the forin u8u. u E U1<zl,,a 1;. ’u is a coristaiit value. If u is Iiunieric attribute. t9 E {<. <. >: >}; 
otherwise 0 tleiiotes a string IiiaEIiirig predicate. i.e.. t9 E { =: CONTAINS} (precise or partial iriatcliiiig). We 
tlwcribe a cori.juIictive query Q by a quadruple ( Q f r O n l .  Q I J l ,  QoILt .  Qcor2d)  where Q J , . ~ ~ ~ ,  is the set of virtual types 
used in Q. Q,, is the set of input arguments. QoIrl is tlie set of output arguments. and Qco,,d is tlie cori.juIictioii 
of coiiiparisori atoms. 

- 

- 

A user may pose queries 011 the fly (without using any pre-defined views or classes). For each user query 
aiitl the result patteiiis. we create a set of v i ~ t v a l  object types as its result place holtler. which describes all tlie 



argurrierits used in tlie yuery, including tlie classes or relations, tlie data types, tlie doxriaiii constrairits: and tlie 
usage (i.e., as input or output parameter) of tlie arguments. 

Example 2. Coiisider online BLAST search sites (sources) for protein sequence similarity: such as NCBI. 
Suppose we want to search for a siiriilar protein sequence, pioteiii structure. a i d  related research to tlie protein 
g p l 2 0 ,  published in 2001 to better gauge tlie effects of a new drug. We may espress tlie query Q: fi7rd s i m i ~ a r  
proteirr seyuence: protein st7-ucbuiq and reluted research, for  gp120 where publicution year = 2001 as a conjunctive 
query of tlie folloiviiig form: 

query(sq, st, a, t ,  j )  :- Protein(p) ,  Li terature(m),  
.sequence(p, SQ), .structure(p, s t ) ,  author(m, a ) ,  
y e a r ( m , y ) ,  titZe(m, s), joumaZ(m, t ) ,  
9 = 2001 A S l b l l ~ ~ ~ ( p ,  ‘gp120’). 

que.ry(sq, s t ,  a. t.:;) is tlie head of the yuery, arid its argurriexits protein seyueiice p :  structure s, author u, title 
t:  journal j are its disti7~.yuislied variables. hi t e r m  of relational SQL. tlie distinguished variables of tlie yuery 
correspoiid to attributes appearing iri the SELECT clause. The rest are atonis of the bvdy of the query. and are the 
bounding patterii of the query. Note that the equality predicates in tlie WHERE clause are represented by equating 
variables in different atoms of a conjuIictive yuery. Tlie following is the internal representation of this conjunctive 
query: 

QjpOtt l  = { Protein(p) ,  Literat ure(nz)} ,  
Q l n  = ( . seq~ence(p , ‘gpi20’ ) ,  y e a r ( m ,  200i)}, 
Qout 
Qcod = {BLAST(.sq,‘gpl20’) ,  9 = 2001) 

= {.sequence@, s q ) ,  .structure(p, st),author(m, a ) ,  titZe(m, t),journaZ(m, j ) } ,  

Tlie rwearclier who poses the yuery does not need to be aware of wliat iiifoimation sources are currently 
available and whicli data scliemas or pre-defined views sliould be used to access them. The data independence as 
such allows tlie query routing to incorporate newly added information sources searnlessly into the system without 
affectiiig tlie way how queries are posed arid how answers are delivered. thus higher scalability is achieved. 
especially wlieri tlie collection of ixifonnatioii sources available is large and frequently cliaiigiiig. 

source-capability profiles. wliicli play a critical role in pruning irrelevant data sources. 
Before we sliow how t,he query is routed to tlie iriost relevarit data sources. we first iiitroduce t71ie concept of 

3.3 The Source Capability Profile 

-4 source capability profile tells wliat is iri an iiifoririatioii source (content description) and what types of services 
(capability description) are provided about its content. It coiitaiiis riot o d y  tlie content and yuery capability 
descriptioii but also statistics on tlie local data (e.g.. size of relations). availability of tlie source with respect to the 
access cost and access authorkzation. as me11 as update frequency and capabilities of the source. 111 addition, each 
source may export informat.ion about itself by giving values to a list of rrieta attributes such as Fieldsupported 
(list of optional fields) : Linkage( the URL where the source should be queried). ContentSummaryLinkage (the 
URL of the coiiteiit summary of tlie source). In this section we will focus only 011 tlie source category. coIiteiit, 
and query capability descriptions. since they are the essential components of the source profile and are used 
esteiisively in each step of tlie yuery routing process. 

Tlie cchyory u7id content description of an irifoririatioii source describes what is in tlie inforrnatioii source. 
Tlie coriteiit description of an information source tells us what types of objects are in tlie source. The category 
description tells us what type of domain tlie source data are used for and tlie IsA categorization of tlie source. The 
source categoiy description often contains ixiforxriatiori that caii be used to veiify ari input (selection) coiiditioii 
or fill in an output paramet.er of a yuery. We model the coiiteiits of an iiiforriiatiori source in terms of the object 
types ant1 tlie object access constraints that. tlie source objects iriust satisfy. Each source object type is described 
by a unary relation. Each access constraint is described using a conjunction of built-in comparison atoiris of the 
form uBu where u is aii attribute of a source type arid o is a coilstarit drawri from a doniaiii that is cornpatible to 



tlie domairi of u. Formally, give? a source S corftairiing k object t p e s ,  the content description of S is described by 
a set of cu7~te71t r~ecords: ((RI(1:): IC1): (&(I>): IC?) . . .: (&(I;): ICt)}: where R, (i = 1, ...: t )  are object types 
and IC, (i = 1, ...: k) are access constraints over the object type R,. We may view a source content description 
as a collection of views defined over the source. Each Ri describes one type of source object. Every object in R,. 
satisfies the insertion constraint IC,. 

The query cupubility description of an iriforiiiatiou source tells which types of queries the source caii answer 
about its content. We Ixiodel the query capabilities of an information source S using cupubility records, each 
is denoted by (S,12.  Solrt. S c o n d ) .  S,, denotes the set of permissible input arguments. Sollt denotes the set of 
permissible output arguments. Scond denotes the logical constraint (A or V) on the mandatory input arguments. 

111 SuIIiIiiary, we denote each information source by a triplet (Scat, Scrlt. S q p d )  wheie Scat denotes the text 
descriptiori of the category 0: tlie source, Sent is a set of source relations: each may be associated with some 
access constraints: i.e.. (R l ( l : )2  IC,). Sqpd deuotes a set of query capability descriptions. each is of the forrri 

Consider the query in Example 2. Suppose we have extracted and collected the source profiles of the information 
servers as sliown in Figure 4. arriorig ~riariy others. Using the user query profile arid the source profiles. we may 
conclude. without running the query: that some of tlie sources are obviously riot contributing to the answer of Q. 
For instance. we caii iminediately deteririirie that Sources 7. 8. aiid 9 are not relevant to this query. because they 
are focused 011 Motif searches and not protein sequence similarity. We can also conclude that Sources 4, 6: 10 are 
Iiot able to contribute to the answer of Q. However, the reasoning heie is more subtle. We are interested o d y  in 
articles that are pulilished in 2001. However. Source G oiily lias articles published before 19-35. Source 4 requires 
a file input format that is not available from the known output of any of the sources. and Source 10 only provies 
book information. Thus. we are left with sources 1. 2. 3. and 5. The rriecliariisrri used in rriakiIig such routing 
decision will be described in Section 3.4. 

Solit- Scond (see Figure 4). 

How to obtain a source profile? There are several ways that a source may export its content a d  capability 
tlescriptioii. One possible way is to publish the contents and capabilities of an information source and let others 
subscribe. AIiotlier way is to write a robot that can extract the list of source content ant1 capability summaries from 
the resources periodically. -411 example of such iobots is the Harvest iobots (h t tp :  //www. harves t .  transac. corn). 
It is also possible to make the sources esport their conteiit and capability profiles only available to a specific 
system through a custoinixed registration process. Furtlienriore. no restriction should be set 011 the format in 
which a source exports or publishes its coriteiits and capability. It can be siiriple test files or stiuctured files or 
directories. A typical example is the ZDSR for 239.50 piofile (used for simple Distributed Search and Ranked 
Retrieval) [Gravano et ul.. 19971. 

3.4 Query Routing: The Main Steps 

We have stated that tlie ultimate goal of query routiiig is to coristrairi tlie search space for a query over a large 
collection of available information sources by reducing tlie overhead of contacting tlie iiiforriiatiori sources that 
do Iiot contribute to tlie query answer. 

Given a user query Q. a user query profile of Q. ant1 a set of source coiltent ant1 capability descriptions. we 
design tlie query routing service as a two-phase process. ,4t the query refinement phase. meclianismi are applied 
to refine the original query iiito a well focused query. aimiiig at reducing the false positives in the query result 
set and erihanciiig tlie quality and the degree of accuracy of the results produced from source selection. We have 
discussed a ~iumber of query refirienieiit mechanisms in Section 2.2 and illustrated tlie user-query-profile based 
query refinement in Section 3.2. 111 this section. we concentrate 011 tlie second-phase of the query routing task 
- source selection am1 its three-step pruning process. iLre omit the detailed algorithms used in each of tlie tliree 
steps. due to tlie space restriction. aiid refer leaders to [Liu. 19971 for further discussion. 

Step 1: Level-one relevance pruning. 
This step serves as the first-round selection wliicli discoveis the candidate iiiforrriatioii sources wliose content 
descriptions are iri some ways related to the scope of a query Q (e.g.. in terms of substring matching or in coricept 
similarity). 



Other factors such as unavailability of tlie sources or affordability of tlie sources should be considered a t  this 
step too. For level-one relevance pruning we use tlie user query scope descriptioii of Q and the content and 
category descriptioii of tlie sources. We call tlie set of sources selected by this step as tu7get inforination sources 
of level-one l*&?UU7LCe. 

Source profiles that are reduIidant (coveriiig the same information from the same source) are also removed at 
this stage. Redundant profiles caii be caused by many factors. For example, iriultiple people may enter a source 
profile for tlie same source or robots which autoiiiatically scan for sources may enter duplicates into the routing 
table due to differences between what is already there and the automatically extracted source profile. This type 
of artificial redundancy caii be pruned early in tlie routing process without loss of iriforrriatiori in the query result. 

Consider Example 2 query, level-one relevance pruning will prune the information sources whose contents are 
iiot ielevaiit to biomedical literature, proteiii sequence structure, or protein sequence sirnilarity. based on the list 
of source profile descriptions in Figure 4, airiorig many others. It will fiud tliat sources 7. 8: and 9 are riot relevaiit 
to tlie query answer. 

This step prunes tlie iIifonnation sources that have level-one relevance but do iiot offer enough query capability 
to contribute to the ariswer of Q. Tlie decision is made based on tlie input and output argurrieiits of Q: the user 
query profile of Q. and tlie query capability descriptions of tlie sources. The user query capacity description of Q 
and tlie source profiles are used in tlie level-two relevaiice pruning. We call tlie set of sources selected by Step 2 
as lu7:qel iiifoririation sources of leuel twv r.elevunce. 

Tlie process for level-two relevance pruiiirig lias two phases. In tlie first phase we prune tlie inforimtion sources 
(1) that have 110 iiiput or output arguments, which are ielevant to tlie arguments used in tlie user yuery, or (2) 
tliat have conflict with the interest of tlie user yuery (such as the query selection coiiditioiis do iiot iriatcli tlie 
access cuistraiiits of the sources). or (3) tliat have arguments corresponding to tlie mandatory input parameters 
of the user query but these arguments can orily lie used as input arid are iiot included in the list of output 
arguirierits of the sources. Tlie irifoririatiori sources selected iii the first phase will be passed to tlie second phase 
where more sophisticated pruning is conducted in tlie process of generating an esecutable plan of the query. For 
example. the following two additional cases are handled: (4) We prune tlie information sources (say Si) whose 
output capability are iiot enough to satisfy the input reyuireriieiit of the other sources (say Sj )  when an inter-site 
join froin S, to S, is required. (5) We also prune those inforiiiatioii sources whose mandatory iiiput reyuireriieiit 
is liigher than tlie input argurrierits tliat tlie user query provides. axid tliere are 110 other iIifoririatioIi sources 
esecuted earlier which would have eriougli output capability to complement such requirement. 

Tlie main difference lxtween tlie two pliases is the following: 111 the first phase we only clieck the ohious 
capability iiiismatclies lietween tlie user query capacity description and each individual information source that 
caniiot be coinplemeiited tlirougli using iiiter-site joins. such as those in cases (1). (2) and (3). whereas in tlie 
secoiid phase. we further prune the ixiformatioii sources wliicli cannot match tlie input requirements of a user query 
eveii tlirougli utilimtiou of inter-site join with other possible sources. Tlie first phase of tlie level-two relevance 
prmiiIig considerably reduces tlie iiuiriber of possibilities coiisideied in geiieiatiiig executable query plans. 

Consider Example 2 query. level-two relevance pruiiiiig will further prune away Sources 4. 6.  arid 10 because 
they are incapable of contributiiig to tlie yuery answer due to tlie restriction 011  the scope of yuery interest (e.g.. 
Source 10 is a bookstore not an technical article source or proteiu database). or tlie coiistraints on the list of 
iriaritlatory input or output arguments of tlie sources (e.g.. Source 4 requires a file input). or the conflict of yueiy 
interest with the access coiistraiiits associated with the sources (e.g.. Source 6 only provides citatioiis for articles 
published before 19G5. wliereas tlie query is interested in only articles published in 2001). 

At this step. mirrored or replicated sources are detected and removed. This step is delayed until last to allow for 
tlie greatest flexibility in choosing tlie most perforrriaiit source for a particular yuery. 

111 general. multiple sources with reduiidant iiifoririatioii cannot be automatically detected. There ale at  least 
three cases wheie soul ces could have redundant information: Fiist. tlieie can lie complete overlap: as in the case 
of replication or iiiirroririg of data. Second. tliere can lie overlap of coriteiit (lata ljetween two sources. but tlie 
iiietatlata used to describe tlie coiiteiit is different (e.g. tliffereiit table names. or different coluinii iiairies). Third, 

Step 2: Level-two relevance pruning. 

Step 3: Level-three relevance pruning. 
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3.5 Initial Experiments 



Tlie essence of routing is to determine tlie relevance of a source to a particular query. There are two typical 
ways in which a data source is measured for relevance: content relevance aiid source capability relevance. Content 
relevance is often determined by keyword relevarice ranking. Source-capability relevance selects sources that have 
tlie capability to answer tlie queries. 

Figure 3: Performance Gaiiis From Routing 

111 tlie first esperiirient. we vary the percentage of sources that are categorically relevait arid completely ielevaiit 
at the schema level. The first figure on the left side of Figure 3 sliows the execution time required for yueryiiig 
between 20-1000 sources. where 30% to 40% of sources are irrelewmt and ten threads are used to retrieve data 
in parallel. Obviously. query fusion for integrated access witliout routing performs the worst. Query fusion with 
level two routing performs better than query fusion with only level-one routing. Note that in our routing scheme. 
level two routing is built on top of level one routing results. 

111 the second experiment slio\vii oii tlie right side of Figure 3. it demonstrates that arbitraiily increasing tlie 
number of threads servicing a single query suffers from tlie law of tliiriinisliiiig returns. Using 20 threads rather 
tliari 10. esecutiori time without routing is nearly halved. However. using 70 threads is only 14% faster tliari 
using GO threads. This is eveIi more proiiouricetl when routing is used. because when the riuiriber of selected data 
sources is below 60. adding additional threads will riot speed up the process. 

4 Related Work and Conclusion 

Tlie very nature of scientific research and discovery leads to tlie coiitiiiuous creation of information that is new in 
coiiteiit or representation or both. Despite tlie efforts to fit rriolecular biology information into standard formats 
and repositories sucli as the PDB (Protein Data Bank) arid NCBI. the number of databases and their content 
liave lxen growing. pushing the eiivelope of staIidardizatioii efforts sucli as IIirriCIF [Westbrook & Bo~riie, 20001. 
Providing integrated and uniform access to these databases lias been a serious iesearcli challenge. Several ef- 
forts [Critclilow et al.: 2000. Haas et al.. 2001. Goble et (11.: 2001, NcGinnis: 1998, Siepel et al., 2001. Davidsoii et al.. 19993 
liave sought to alleviate the interoperability issue: by translating yueries from a uniform query language into the 
native query capabilities supportxed by tlie individual data sources. Typically. these previous efforts address the 
interoperability problem from a digital lilxary point of view. i.e.. they treat individual databases as well-known 
sources of existirig information. Wliile they provide a valuable service. due to the growing rate of scientific dis- 
covery. an increasing amount of new inforination (the k i d  of hot-off-the-bench iiiforiiiation that scientists would 
be most interested in) falls outside the capability of these previous interoperability systems or services. 

In this paper. we address the problem of providing automated or semi-automated access to iiew information 
that has just become available. soiiietirries by changing tlie representation forrriat of an existing database. The 
lag betwcen the discovery and iriakirig the iiiforrriatiori available is primarily due to the liunian intervention 
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needed to translate tlie new inforrriatiori either to an existing database format, or to augrient a database with 
iiew formats or fields. We believe that the iIicreasiIig rate of scientific discovery arid publication will make this 
problem iricreasixigly serious: sirice more databases will be augmented more frequently: or new databases will be 
created to publish the new information. 

We have described the BioZoom query routing scheme for providing fast access to the growing new information 
that remains elusive with the current technology. The main coritribution of the paper is the application of tlie 
coricepts and techniques called query ~vuti7i.y to iricrease the degree of autoination in new information access arid 
to reduce the amourit of unnecessary delay due to contacting sources that cannot contribute to given queries. 
Query routing uses rnetadata. called suu~ce-cupubiZit~ pr*ofiZe, to support dyIiaIIiic matching of each query with 
tlie iIifoririatiori sources that are relevant to, arid capable of. responding to that query. By updating a source 
profile, new information or capabilities of the source are iIriIriediately accessible by queries processed through 
query routing. Furthermore, addition of iiew bioiIiforIIiatics data sources and capabilities can be dynamically 
iricorporatetl into the subsequent execution of queries. The main thrust of our query routing scheme is its 
iiitelligeiit souice selection powered by the source-profile based multi-level progressive pruning strategy. Our 
iiiitial experiments sliom the increased benefits of query routing as the number of data sources available to a 
query ixicreases. 
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Source 1: NCBI BLAST 
Category: Protein and nucleotide similarity search; 
Query Capabilities: {protein-sequence(s,p), nucleotide-sequence(s,n), database(s, db), searchtype(s, t ) } ,  
{similar-sequence(s,  sim), al ignment (s ,  a ) ,  sequence id(s ,  id)}, 
{ (protein-sequence(s,p) A database A searchtype = (blastp V blastx V t6 las tx ) )v  
(nvcleotide-sequence(s,p) A database A searchtype = (blastn V tblastn))} . 
Mirrors:Austmilia,  China, Japan, Korea, Malaysia, Singapore, Thailand, USA 
Source 2: KEGG 
Category: Protein similarity search; 
Query Capabilities: {protein-sequence(s,p), nucleotide-sequence(s,n), database(s, db) ,  searchtype(+ t ) } ,  
{similar-sequence(s,  sim), al ignment (s ,  a ) ,  sequence id(s ,  i d ) }  
{ (protein-sequence(s,p) A database A searchtype = b1astp)V 
(nucleotide-sequence(s,p) A database A searchtype = blastn)} . 
Source 3: PDB 
Category: Protein structure search; 
Query capabilities: {protein,  equence( t ,  sq), pdb id (  t ,  i d ) ,  title( t ,  t t ) } ,  
{pdb-id(f, id), t i t le(t ,  t t ) ,  sequence(t,sq), classif ication(t ,  c) ,compound(t ,  cmpnd) , s f ruc fure ( t ,  s f ) } ,  
(protein,equence(f, sq) V pdb-id(t,id) V t i t l e ( t ,  t t ) }  
Mirrors: Sun Diego Supercomputer Center; Rutgers University; National Institute of Standards and Technology; 
Cambridge Crystallographic Data Centre, UK; National Universitg of Singapore; Osaka University, Japan; 
Unrversidade Federal de Minus Gerais, Brazil; Bio Molecular Engineering Research Center, Boston University 
Brookhaven National Laboratory . . . 
Source 4: VAST 
Category: Protein structure similarity search; 
Query Capabilities: { PDB- f i l e ( t ,  pdb-f) ,  S P L O R P D B - f i l e ( t ,  xplor-pdf-f), CNS-deposit-j i le(t ,  cnsdeposz t - f ) ,  }, 
{sequence(t ,  sq), structure(t ,  s t ) } ,  
{ P D B - f i l e  V S P L O R - P D B - f z l e  V CnTS-deposit-file} 
Source 5: PubMed 
Category: Biomedical lrterature; Content: Article(a) 
Query Capabilities: {author(a, u), / i f l e (a ,  t),keyurord(a, k),pubrned-id(a, id)}, 
{au fhor (a ,  u), f i t l e (a ,  f ) ,  journal(a,j),pub-year(a, y ) ,  vo lume(a ,  v), i s sue(a ,  i) ,pages(a,  p),pubrned-zd(a, id)}, 
{author(a ,  k) v tztle(a, t )  v keyu,ord(a, k)}. 
Source 6: Old MEDLINE 
Category: Biomedical literature; 
Query Capabilities: {uu fhor (a ,  u), t i f l e (a ,  1 ) .  keyword(a, Ic),pubmed-zd(a, z d ) } ,  
{ au fhor (n ,  u), t i f l e (a ,  f ) ,  journal (a ,  j) ,pub-year(a,  y ) ,  volume(a, v), i s sue(a ,  z),pages(a, p),pubmed-zd(a, i d ) } ,  
{aufhor(a,  k) v f i t le (a ,  t )  v keyword(a, k)}. 
Source 7: GenomeNet (Japan) 
Category: Motif Search Content: Motif(f); database = (Vertebrates, Virus, Insects, Plants, Bacteria,Fungi, Nematodes), 
search-type = ( Prosite Pattern, Prosite Profile, BLOCKS,  ProDom, PRINTS ,  Pfam) 
Query capabilities: { .$equence(f, s ) ,  da fabase( f ,  db)} ,  
{ ezpec fa f ion(  f, e),probability(f,  p ) ,  descr ip f ion( f ,  d ) } ,  

Content: sequence(s), database = {Drosophila, est-human, . . . } 

Content: seguence(s), database = { Drosophila melanogaster, Homo sapiens, . . . } 

Content: structure(t) {A l l  known protein structures} 

Content: structure(t), database = (non-redundant PDB,  or full PDB)  

Content: Article(a), pub-year(a, y )  Ay  < 1965 

{ sequence ( f , s )  A database(/, db) A search-type(f ,srcht)}.  
Source 8: Stanford Motif search 
Category: Motif Search Content: Motif(f);  database = (BLOCKS+ and P R I N T S  , non-biased BLOCKS+ and P R I N T S )  
Query Capabilities: {.sequence(f, s), dafabase( f ,  db)},  
{ expect a t ion( / ,  e), probabilif y (  f ,  p ) ,  description(f ,  d ) } ,  
{ sequence ( f , s )  A dafabase(f ,  db)} .  
Source 9: KEGG Motif 
Category: Motif Search Content: Motif(f); database = (D.melanogaster, E.coli, H.sapiens . . .), Prosite patterns 
Query Capabilities: {sequence( f ,  s), database(f ,  db)},  
{ e zpec fa f zon( f ,  e) ,probabili fy(f ,  p ) ,  description( f, d ) } ,  
{ sequence( f ,  s )  A dafabase( f ,  db)}.  
Source 10: fatbrain.com Book Store Database 
Category: Technical Book Store (includuing biotech books); 
Query Capabilities: Ifitletb. t ) .  authorsf6.a)).  

Content: Book(6); 
I . ,,, 

{ i i f le(b,  f ) ,  authors(6, a); pubiishei(b,pub), year(6,  y), price(6, p ) ,  isbn( b, n )} ,  
{ti t le(b,  1 )  V authors(b,a) V isbn(b,n)} .  

Figure 4: A sketch of source capability description of example data sources 

http://fatbrain.com

